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An experimental investigation of the onset of convection in shallow fluid layers heated 
uniformly from below and cooled from above by an air layer has been made. If the 
depth of the silicone layer is smaller than 2 mm the onset of convection takes place 
in two stages. There is first a weak pattern, which is characterized by its appearance 
at  ever smaller temperature gradients as the depth of the fluid is decreased. When 
the temperature difference across the fluid is increased a second strong pattern forms 
near the predicted critical Marangoni number. The cells in this pattern are hexagonal 
and seem to be what one has always referred to as BBnard cells. The temperature 
gradient at  which this pattern appears increases with decreased depth. The heat 
transfer through the fluid has been measured. The critical temperature gradient for 
the formation of the hexagonal pattern has been determined from the break of the 
heat transfer curve. 

1. Introduction 
The investigations of BBnard (1900) marked the beginning of the study of fluid 

motions in a shallow fluid layer heated uniformly from below. The most notable 
observation of BBnard was the hexagonal convection cells, now commonly referrcd 
to as BBnard cells. Today, 86 years later, we still do not possess a convincing 
explanation for the formation of the hexagonal cells, and for the preference for 
hexagonal cells over the other possible cellular patterns. 

Rayleigh’s (1916) pioneering theoretical analysis of the stability of a layer of fluid 
heated from below seemed to provide a basis for the understanding of the BBnard 
cells. Rayleigh’s most fundamental result however was the discovery of the existence 
of a critical or minimal temperature gradient required for the onset of convection. 
Bdnard had not noticed the existence of such a critical gradient in his experiments. 
Actually, in a later evaluation of his experiments (BBnard 1930), he came to the 
conclusion that he had observed convection at temperature differences about lop4 
to times smaller than the critical temperature gradient predicted by Rayleigh. 
BBnard’s interpretation of his own experiments was ignored. We shall scc in the 
following that his interpretation of his experiments was correct. 

A new aspect was introduced into the explanation of the BBnard cells by Block 
(1956). He concluded from his experiments that surface tension must play a 
significant role in the formation of the hexagonal cells. He also pointed out that 
convective motions occurred at temperature differences of a fraction of the predicted 
critical value. A short time thereafter the same points were established theoretically 
by Pearson (1958). Pearson, who investigated surface forces only, showed that the 
onset of surface-tension-driven convection is determined by the critical value of a 
non-dimensional parameter, the Marangoni number. From the value of the critical 



50 E .  L.  Koschmieder and M .  I .  Biggerstaff 

Marangoni number, and from the linear dependence of the Marangoni number on the 
depth of the fluid it follows that the onset of convection in shallow fluid layers should 
occur at critical temperature differences much smaller than those predicted by 
Rayleigh’s theory. An explanation for the discrepancies of the experimental and 
theoretical values of the critical temperature difference had apparently been found. 
However, we will show in the following that the onset of surface-tension-driven 
convection occurs at temperature differences significantly below those predicted by 
the critical Marangoni number. 

Pearson’s theory has been augmented by the studies of Nield (1964), and Scriven 
& Sternling (1 964). Nield studied the conditions for the onset of surface-tension-driven 
convection in the presence of gravity, i.e. he dealt with the situation experienced 
in the laboratory and obviously present in BBnard’s experiments. He found that 
surface-tension-driven convection and buoyancy-driven convection are coupled. In 
the case of very shallow fluid layers the minimal temperature difference required for 
the onset of convection in the presence of gravity is, according to Nield, determined 
by the critical Marangoni number. Scriven & Sternling neglect gravity, just as 
Pearson did, but take various other parameters into account, in particular the surface 
tension coefficient 8, not only the variation of surface tension with temperature 
dS/dT, in which form surface tension appears in the Marangoni number. Smith (1966) 
extended these two studies by considering the effect of gravity waves. He found that 
surface waves are usually important only for very small wavenumbers. 

The results of Scriven & Sternling differ drastically from those of Pearson as well 
as Nield. They find that onset of convection in very shallow fluid layers can occur 
a t  very small temperature differences, the onset temperature difference decreasing 
with decreased fluid depth. This differs clearly from the result to be expected when 
either the critical Marangoni number or the critical Rayleigh number determine the 
onset of motion. An onset of convection governed by, for example, the critical 
Marangoni number implies that the critical temperature gradient increases as the 
depth of the fluid is decreased. As will be shown in the following, the onset of 
convection with a free (air) surface actually occurs at smaller temperature differences 
if the fluid depth is decreased, provided that the depth of the fluid is smaller than 
a certain value above which the conventional critical Marangoni number determines 
the onset of motion. 

The stability of a non-deformable fluid layer subject to buoyancy and surface-tension 
forces has been investigated with the energy method by Davis (1969). Davis finds 
a subcritical instability in a small range of Marangoni numbers for sufficiently small 
Rayleigh numbers. These energy method studies have been confirmed by Davis & 
Homsy (1980) with an investigation of the same problem but with a deformable 
surface. Castillo & Velarde (1982) have studied, also with the energy method, the 
stability of two-component or one-component fluid layers with a deformable surface 
heated from below or from above, and found likewise this subcritical instability. 

Nonlinear theoretical studies of surface-tension-driven convection have been made 
by Scanlon & Segel(1967), Kraska & Sani (1979), and Cloot & Lebon (1984), all trying 
to explain the preference for the hexagonal cells. Recently Rosenblat, Davis & Homsy 
( 1982 a ,  b )  have investigated surface-tension-driven convection in bounded circular 
or rectangular fluid layers of small aspect ratio. There are only two modern experi- 
mental investigations of surface-tension-driven BBnard convection. Koschmieder 
(1967) observed the formation of a regular hexagonal cell pattern and determined 
the wavelength of the convective motions. Palmer & Berg (1971) determined the 
critical Marangoni number from the break of the heat transfer curve which is caused 
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FIGURE 1. Schematic section though the convection apparatus. 

by the onset of the convective motions. These two sets of experiments were made 
with fluid layers 2-5 mm deep. We will show in the following that one has to go to 
layers less than 2 mm deep in order to observe purely surface-tension-driven motions. 
BBnard's experiments were made with fluid layers of depths ranging from about 1 mm 
to about 0.5 mm. 

2. Description of the apparatus 
The apparatus used is a modified version of an apparatus used previously by 

Koschmieder t Pallas (1974a). A schematic diagram of the apparatus is shown in 
figure 1. The bottom of the fluid layer was a 5 cm thick copper block, which was heated 
from below by an electric current going through a resistance wire. The wire was 
cemented in circular grooves in a brass plate. The excellent thermal conductivity and 
the thickness of the copper block in combination with poor thermal conduction on 
top assure that the temperature a t  the top of the copper plate is practically uniform, 
as is required for comparison with the theories describing BBnard convection. To 
avoid lateral heat losses the copper block was placed in a vacuum tank. The copper 
plate was covered by shallow layers of silicone oil, bounded laterally by a circular 
lucite rim of 13.55 cm diameter. With a fluid depth of say 1 mm the aspect ratio of 
the fluid, defined as the ratio of the horizontal extension of the fluid divided by the 
fluid depth, was 135. The fluid was cooled from above through a very thin layer of 
air between 0.3 and 0.5 mm deep. The air was bounded on top by a glass plate 2.3 mm 
thick. The glass plate was the bottom of a lid in which water was circulated at a rate 
of 80 cm3 s-l in order to fix the temperature of the glass plate and thereby the 
temperature on top of the fluid. 

Most of the space above the glass plate was filled usually with the so-called heat 
sensor, a device to measure the increase of the temperature of the cooling water caused 
by the heat transferred through the fluid layer and the air above it. The heat sensor 
is essentially a thermopile of 10 thermocouples in series, measuring the temperature 
difference between a copper ring surrounding the water inlet and copper ring being 
in contact with the cooling water after it passed over the glass plate.The heat sensor 
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has been described in detail elsewhere (Koschmieder & Pallas 1974b). Temperature 
differences of 0.001 "C between the incoming and outgoing water can be measured 
with the heat sensor. From the measured temperature increase of the cooling water 
follows the heat flux through the fluid layer, as will be discussed later. 

The cooling water was taken from a 50 1 insulated tank filled with water. The 
temperature of the water in the insulated tank was controlled by a heat exchanger 
whose temperature was determined by water coming from a commercial regulated 
water bath. Cooling water cannot be used from the water bath directly as the heat 
sensor is too sensitive. The heat sensor picks up the fairly regular fluctuations of the 
water temperature of the bath, which are caused by the heating and cooling of the 
temperature control. The enormous heat capacity of the water in the insulated tank 
reduces the fluctuations of the water-bath temperature. A steady signal for the 
temperature difference between incoming and outgoing water was then obtained. 

3. The experiments 
3.1. Pattern formation 

The fluid motions were made visible by aluminum powder suspended in the fluid, 
which was either 100 cs silicone oil, or in some cases 50 cs silicone oil (Dow Corning 
200 fluid). The properties of both fluids are listed in table 1 .  All experiments were 
made in a nearly steady state, it took usually about eight hours to heat up the fluid 
from rest at zero temperature difference to  the highest temperature difference applied, 
which was in the maximal case about 60 "C between the copper plate and the glass 
lid. The fluid depth in the experiment shown in figure 2 was 1.37 mm, the depth of 
the air gap on top of the fluid was 0.5 mm. 

When the fluid layer is heated up the first faint sign of motion is, besides a strong 
roll along the rim, a system of circular concentric rings, see figure 2(a) .  There are, 
in this picture, two stronger individual cells, which are caused by two impurities which 
have come into the fluid with the aluminum powder. The convecting fluid is seen on 
the shiny copper plate through the lid covering the fluid layer. The lid is filled with 
cooling water in order to maintain the temperature difference across the fluid. The 
heat sensor is taken out of the lid. Increasing the temperature difference causes the 
rings in figure 2 ( a )  to break up into cells, figure 2 ( b ) .  The cells clearly have a centre, 
the cell outline on the other hand is rather weak and not regular, certainly not of 
a regular hexagonal form. Increasing AT further intensifies the cells, figure 2 ( c ) .  The 
cell boundaries then become outlined by floating aluminum powder which is extruded 
from the fluid. In  figure 2 a larger than usual amount of aluminum powder was added 
to the fluid in order to be able to  see the flow on photographs. I n  figure 2(c) the 
extruded aluminum powder can be seen floating on the surface of the fluid in the space 
between the outermost ring of cells and the clearly visible rim roll. 

When the temperature difference is increased further a very definite change in 
appearance of the cells occurs spontaneously a t  a certain reproducible (critical) 
temperature difference AT,, as can be recognized clearly in figure 2 ( d ) .  The new type 
of cell is strikingly reminiscent of BQnard cells as we have seen them many times 
before, a good example of such a pattern can be found in Koschmieder (1974). As 
the hexagonal cells form, the floating aluminum powder, which outlined the cells of 
the first pattern, disappears from the surface of the fluid. Some aluminum powder 
then settles at the bottom in the centre of the cells underneath the uprising fluid. 
The settled powder can be recognized as little black specks in figure 2 ( d ) .  The 
appearance of the hexagonal cells is also accompanied by an increase of the heat flux 
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FIGURE 2. Visualization of the onset of convection in a layer of silicone oil of 100 cs viscosity, 
1.37 mmdeep,withanairgapof0.51 mm. @)AT = 0.57 AT, ; (b )0 .72  AT,;  ( ~ ) 0 . 8 6 A T , ; ( d ) 0 . 9 5  A!&; 
( e )  AT,;  (f) 1.08 AT,. 

through the fluid layer, as will be shown later. A truly critical transition should, under 
ideal conditions, occur simultaneously over the entire area of the fluid. We have not 
observed such a genuine transition because of experimental difficulties. I n  particular, 
we cannot keep the depth of the air layer uniform over the entire area of the fluid 
layer. The reason for this is that  the glass plate of the lid has to be glued to the frame 
of the lid. We have not been able to  do this with an  accuracy better than (at  best) 
&& mm. But & mm is a substantial fraction of the gap between the fluid and the 
glass, which ranges from 0.3 to  0.5 mm in different experiments. A large portion, in 
many cases actually the larger part, of the applied temperature difference between 
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V P a K S dS/dT 
(cm"s) (g/cm3) ("C-1) (cm'/s) (dyne/cm) (dyne/cm "C) 

1 .OO 0.968 0.00096 0.001 095 19.36 - 0.050 
0.50 0.960 0.001 04 0.001 025 18.35 -0.047 

TABLE 1. Properties of the fluids at 25 "C 

FIQIJRE 3. Shadowgraph of the hexagonal pattern at AT = 1.19 AT,. Viscosity 100 cs, fluid 
depth 1.35 mm. 

the copper and the glass lid falls off in the air gap because of the very poor thermal 
conductivity of air. An air gap of unequal depth therefore causes a one-sided 
temperature distribution on top of the fluid. Hence the onset of the transition is 
one -sided. 

When the temperature difference is increased further the hexagonal cells spread 
over an increasing area of the fluid, see figure 2 (e). Finally figure 2 (f) shows hexagonal 
cells covering the entire surface of the fluid. In this photograph the lid has been 
removed, so that one can see the rim of the layer with the rim roll, which was obscured 
in figure 2 (a-e). There are about 200 regular hexagonal cells in the pattern in figure 
2 (f). When the slightly supercritical temperature difference is maintained another 
strange twist in the behaviour of the aluminum powder occurs. The small heaps of 
settled aluminum powder underneath the cell centres disappear, which means that 
the powder goes back into solution. This has never happened before in our 
experiments with deeper fluid layers. The peculiar behaviour of the aluminum powder 
does not seem to have fluid dynamics significance, but is an indication that surface 
forces play a role in the experiments with very shallow layers. 
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FIQURE 4. Heat transfer in the 1.81 mm deep fluid layer of 100 cs viscosity. 
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FIGURE 5. Heat transfer in the 1.31 mm deep fluid layer of 1 0 0  cs viscosity. 

There is another way to visualize the fluid motions, namely the shadowgraph 
technique described by Silveston (1958). A parallel beam of white light is shone 
through the fluid layer where it is reflected from the bottom. The index of refraction 
in the fluid varies with temperature and consequently varies locally in the fluid with 
the temperature in the convective cells. The optical path of the light in the fluid layer 
is therefore different in different parts of a cell. Interference occurs therefore in the 
reflected light beam, outlining the cell pattern. We were not able to obtain a 
shadowgraph from the first pattern when the applied temperature difference was 
substantially below A%, regardless of whether we used the copper plate or a glass 
mirror placed on the copper plate as the bottom of the fluid. The surface of the 
copper block produces a shadowgraph of the second, hexagonal pattern, with minor 
imperfections resulting from the remaining uneveness of the copper surface caused 
by the machining. Shadowgraphs of the hexagonal cells obtained with the mirror 
were nearly perfect, see figure 3. One has to keep in mind that the mirror changes 
the thermal boundary condition at the bottom of the fluid, replacing the excellent 
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FIQURE 7. Heat transfer in the 0.72 mm deep fluid layer of 100 cs viscosity. 

thermal conductivity of copper by the poor thermal conductivity of glass. The 
convective flow visualized by shadowgraphs with either the copper bottom or the 
mirror was nevertheless the same as the flow visualized with the aluminum powder. 

3.2. Heat $ux measurements 

The usual procedure to determine the critical temperature gradient for the onset of 
convection is via the break of the heat transfer curve brought about by the additional 
heat transfer of the convective motions, a method introduced by Schmidt 6 Milverton 
(1935). The results of our heat transfer measurements are shown in figure 4-7. The 
heat flux when plotted in absolute units, or, for example, as microvolts measured by 
the heat sensor, has such a small change of slope with the onset of convection that 
the crjtical temperature difference cannot be determined accurately from the break 
of the curve. The heat flux in figures 4-7 is therefore plotted in units of the Nusselt 
number, which is the ratio of the actual heat flux divided by the heat flux caused 
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by the thermal conductivity of the fluid only. On a plot of Nusselt number versus 
applied temperature difference the break of the heat transfer curve is much more 
easily recognizable. The value of thc Nusselt number before onset of convection 
is 1. 

The abscissa in figures 4-7 is the temperature difference AT, applied t o  the fluid. 
This temperature difference cannot be measured directly, because there is no space 
in the air gap above the fluid layer to mount thermocouples. The value of AT, has 
to be calculated from the temperature difference A T  between the copper plate and 
the cooling water. For the heat flux measurements we did not use the glass plate on 
top of the air layer, but a copper plate of 2 mm thickness. This was done to avoid 
additional corrections for the temperature drop in the glass. The value of AT, is given 

(1) 

where h, is the mean thermal conductivity in the fluid layer, ha the mean thermal 
conductivity in the air layer, AZ, the depth of the air layer and AZ, the depth of 
the fluid layer. A T  can be measured with an accuracy better than 1 yo. Both thermal 
conductivities are known only with about 1 yo accuracy. The depth of the fluid is 
known to about 1 yo, while the depth of the air layer, which is of order 0.5 mm or 
less, is known at best with only 2 yo accuracy. So the cumulative uncertainty in the 
value of AT, is a t  least 5 %. Since the Nusselt number is proportional to AT,, the 
experimental values of Nu can differ from 1 by +5yo or more. It is likely that the 
uncertainty in the value of Nu will increase with decreased AZ, and AZ,, because in 
particular the uncertainty in AZ, becomes increasingly large. All measurements of 
Nu give the mean value of ' the  heat flux a t  a given AT, determined by four 
experiments. The standard deviation of the four measurements determines the 
experimental error of the heat flux measurement. Since so many error bars would 
confuse the graphs, only the average value of the error bars is indicated in the figures. 

We will discuss the heat flux curve of the fluid layer with 1.81 mm depth (figure 4) 
first. I n  this case i t  appeared from corresponding visual observations that a t  
AT, x 6.6 "C a hexagonal pattern had established without a prior first pattern. 
There is, of course, an uncertainty in the visual determination of AT,, because the 
pattern does not form spontaneously over the entire fluid. This uncertainty is of the 
order of 5 % of A!& As can be seen in figure 4 the heat flux is, within the experimental 
error, about Nu = 1.03 for A 8  up to 5 "C, then i t  seems to increase prior to  the 
observed A% = 6.68 "C, and increases steadily after A q .  As we will see in the data 
evaluation i t  appears that  with this fluid depth the formation of the first pattern has 
just taken place prior to  the formation of the hexagonal cells. This is also indicated 
by the increase in the measured Nu before A E .  The increase of Nu after AT, is in 
agreement with expectations. 

With a fluid layer of 1.31 mm (figure 5) we observed visually the formation of the 
first pattern a t  A q  x 3.7 "C. Our heat flux measurements indicate an increase of the 
Nusselt number for values of AT, < 3.7 "C. This is caused by an erroneous signal of 
the heat sensor. At very small values of AT, the heat flux through the fluid layer is 
very small. The temperature increase in the coolant measured by the heat sensor is 
then determined mainly by heat generated by dissipation in the cooling fluid, as i t  
moves from the inlet over the lid to  the outlet. The contribution of dissipation to  
the heat sensor signal decreases as the heat flux to the lid from underneath increases. 
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In  order to obtain a signal from the heat sensor which is less affected by dissipation 
in the coolant, we have, in all heat flux measurements, reduced the flow rate of the 
cooling water to 20 cm3 s-l. For values of AT, between AT, and AT, at x 7.9 "C the 
heat flux in figure 5 increases on average just a little, then increases steadily and at  
a faster rate after AT,. There is, of course, no abrupt change in the slope of the heat 
transfer curve a t  A.T, because we are dealing here with the gradual transformation 
of a pattern, as shown in figure 2 (d-e). 

Figure 6 shows the heat flux for a fluid layer of 0.93 mm depth, and figure 7 for 
a depth of 0.72 mm. It can be seen on these figures that the critical temperature 
difference AT, for the formation of the hexagonal cells increases with decreased depth, 
while on the other hand the temperature difference AT, for the formation of the first 
pattern decreases with decreased depth. The values of these temperature differences 
for the different fluid layers are listed later in table 2. It is already apparent in figure 
6 and seems to be certain in figure 7 that the heat flux through the fluid layer is no 
longer constant after the formation of the first pattern, but increases with increased 
AT,. This means that the motions in the cells of the first pattern are sufficiently fast 
to transfer an additional amount of heat. The formation of the hexagonal cells is still 
marked by a clear break in the heat flux curve in figure 6, a t  the temperature 
difference at which we visually observed the transition. In figure 7 however the break 
in the heat flux curve is barely recognizable. This probably means that near AT, the 
motions in the first pattern have become so vigorous that they hardly differ from 
the velocity of the flow in the hexagonal cells. 

We have also measured the heat flux for two fluid layers of 50 cs silicone oil. Since 
there is no additional significant feature in these measurements their curves will not 
be shown. 

3.3. Data evaluation 
In order to understand the meaning of our observations the various experimental data 
have to be expressed in terms of the non-dimensional parameters involved. Buoyancy 
driven convection is governed by the Rayleigh number, which is 

with the volume expansion coefficient a, the acceleration of gravity g, the depth of 
the fluid d,  the kinematic viscosity v and the thermal diffusivity K .  The critical 
Rayleigh number R, for onset of convection in a fluid layer with a free surface is 
R, = 1100.6. This value of R, applies when the top free surface is an excellent thermal 
conductor. Air on top of the fluid however approximates an insulating top boundary. 
The critical Rayleigh number in this case is then R, = 669 (Nield 1964). 

Surface-tension-driven convection is governed by the Marangoni number, which 
is 

dS ATd 
dT PVK ' 

M a = - -  (3) 

where dS/dT is the variation of the surface-tension coefficient with temperature, d 
is again the depth of the fluid, and p is the density of the fluid. The critical Marangoni 
number Mu, with an insulating top boundary is Ma, = 79.6 (Nield 1964). 

Table 2 gives, for different fluid depths, the values of the temperature difference 
for the appearance of the first pattern AT,, the temperature difference for the 
appearance of the hexagonal cell pattern AT,, and the corresponding Rayleigh and 
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d AT, AT2 
No. (mm) ("C) ("C) R, MI R2 M2 

(loo CS) 

- - - 91.5 76.8 1 2.57 5.98 
2 1.81 6.68 6.68 35.9 61.0 35.9 61.0 
3 1.31 4.12 7.92 8.21 26.4 16.4 52.9 
4 0.93 3.86 11.3 2.73 17.5 8.73 56.2 
5 0.72 2.09 12.4 0.67 7.17 4.49 48.2 

(50 cs) 

6 1.34 2.88 5.16 13.8 37.0 25.4 68.0 
7 0.93 2.74 6.82 4.40 24.5 11.5 63.8 

TABLE 2. Temperature difference and non-dimensional numbers of the pattern formation 

Marangoni numbers. The lower part of table 2 gives the same parameters for the 
experiments with the 50 cs oil. 

In  agreement with our visual observations and with the heat transfer measurements 
(figure 4) we have set the temperature difference for the onset of the first pattern in 
the 1.81 mm deep layer equal to the temperature difference for the appearance of the 
hexagonal pattern. Actually, the first pattern forms, with this fluid depth, just before 
the hexagonal pattern, but within the experimental error the temperature differences 
for the formation of both patterns coincide. As can be seen in table 2, the temperature 
difference at  which the first pattern forms decreases systematically with decreased 
fluid depth, while the temperature difference for the formation of the hexagonal 
pattern increases with decreased depth. In  the 0.72 mm deep layer the Rayleigh 
number for onset of the first pattern is < 1, the Rayleigh number for onset of the 
hexagons is only 4.5. The Marangoni number for onset of the first pattern in the 
0.72 mm deep layer is only 7, i.e. much smaller than the critical Marangoni number. 
On the other hand the Marangoni numbers for onset of the hexagonal pattern are 
near the theoretical critical Marangoni number. 

The values of the Rayleigh number as well as the Marangoni number for the onset 
of both patterns in the 50 cs oil are in each case larger than the corresponding values 
for the 100 cs oil. The differences are too large to be explained by the experimental 
uncertainties. There are, on the other hand, not enough data to decide whether or 
not there is a systematic shift to higher non-dimensional numbers with the 50 cs oil. 
We emphasize that the visual observations with both oils gave completely analogous 
results. 

We note that the uncertainty in the values of the Rayleigh numbers is of the order 
of 10 %, because A T  is known only to about f5%, as discussed before. The depth 
d is known to about 1 %, so d3 is known to about 3 yo, v and K are both known to 1 %. 
The uncertainty in the values of the Marangoni numbers is also of the order of 10 yo. 
We have measured the value of dS/dT. The tensiometers used to determine 8 are 
accurate to only 1 %. On the other hand, dS/dT is quite small, so the error in the 
determination of dS/dTis much larger. We have measured dS/dT before (Koschmieder 
1967) and found for the 100 cs silicone oil dS/dT = 0.058 dyne/cm "C. Our present 
value dS/dT = 0.050 dyne/cm "C is slightly smaller, but the difference is probably 
primarily the systematic uncertainty in determining dS/dT. We do not claim an 

3 P L Y  167 
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MI M, 
FIGURE 8. Comparison of the normalized Rayleigh and Marangoni number for the onset of 
convection of the two patterns. Open circles indicate first pattern, full circles indicate hexagonal 
pattern. The numbers refer to the different layers listed in table 2. The dashed line shows the 
expected onset of surface-tension-driven convection. 

accuracy better than f 5 yo. The uncertainty in the Marangoni number is of the order 
of 10 yo, because 5 yo comes from dS/dT, 1 Yo each from v and K and 5 % from AT. 

For comparison with theory, in particular with figure 1 in Nield (1964), we divide 
the Rayleigh numbers and Marangoni numbers in table 2 by the corresponding 
critical numbers. However, the critical values of the numbers for the insulating free 
surface cannot be used now. The upper thermal boundary condition is taken into 
account by Nield via the parameter L, which is given here by L = (dNu/dT) AT,. The 
values of dNu/dT follow from figures 4-7. The value of L for the five fluid layers listed 
in table 2 is L = 0.19kO.02. The critical Marangoni number with L = 0.19 is, 
according to Nield, M, = 86.8, the critical Rayleigh number is then R, = 693.5. Using 
these critical numbers we arrive at  the points shown in figure 8. The dashed line in 
figure 8 shows the curve for the onset of convection in the presence of buoyancy and 
surface-tension effects. The critical curve can be written as RIR, + M/Mc x 1.  As we 
see in figure 8 the measured points for the onset of the hexagonal pattern are near 
the critical line. The points deviate from the expected value to lower values of M/M, 
for the fluid layers with smaller depth. This seems to be a systematic effect. We 
speculate that this is caused by finite amplitude effects of the flow in the first pattern. 
Before the formation of the hexagons the motion in the first pattern seems to become 
so vigorous that the hexagons form prematurely, before one would expect the 
hexagons to form in a resting fluid layer. The vigorous motion in the first pattern 
is clearly documented by the increase of the convective heat transfer before the 
formation of the hexagons (figures 4-7). 

The points in figure 8 which mark the onset of the first pattern are clearly 
subcritical from the point of view of the theory of convection caused by the 
surface-tension gradient dS/dT. As the thickness of the fluid layer increases the 
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difference in the Marangoni number of the onset of the two patterns decreases, until 
at around 2mm depth (with this fluid) the hexagonal pattern becomes the only 
pattern to appear at all. On the other hand, the tendency of the first pattern to appear 
at ever smaller temperature gradients, or Rayleigh and Marangoni numbers, is quite 
obvious. 

4. Discussion 
The principal result of these experiments is the discovery of the unexpected first 

pattern. In order to observe this pattern i t  is necessary to work with fluid layers of 
small depth, in our case smaller than 2 mm. Small depth was involved in BBnard’s 
observation that his cells formed at extraordinarily small Rayleigh numbers and is 
also a requirement for surface-tension forces to have their full impact. 

It has been suggested that there may be three reasons for the theoretically 
unexpected formation of the first pattern, namely 
(a) an experimental imperfection ; 
(b) a subcritical instability; 
(c) an instability not contained in the conventional theories. 
An experimental imperfection would be a deviation of the experimental set-up from 

the case studied in conventional theories, that is from the case of a plane motionless 
fluid on an infinite horizontal plate heated uniformly from below and cooled 
uniformly from above through the upper surface which is subject to surface tension 
effects. 

In  our apparatus such an imperfection is the meniscus of the fluid layer at  the wall, 
which is not considered in the theories. The meniscus is a natural phenomenon 
occurring whenever a fluid layer is in a container. In reality the meniscus seems to 
pose more of a problem than one would expect. We have observed that the silicone 
oil moves up along the rim as a thin film to a height of over 1 cm if the applied 
temperature difference is large, probably a consequence of the vertical temperature 
gradient in the rim. However, the meniscus cannot be the cause of the first pattern 
because one can arrange a fluid layer without a meniscus and still observe the first 
pattern. The meniscus was eliminated by containing the fluid with a thin lucite ring 
(of 102 mm diameter and about 1.4 mm depth). Fluid was put into the bowl formed 
by the copper bottom plate and the lucite ring so that the level of the fluid was plane 
with the top of the ring. The first pattern formed as usual. 

In  connection with the first occurrence of circular cells in our experiments it has 
been suggested that the first pattern may be caused by lateral heat loss or other radial 
temperature gradients, such as those caused by the misalignment of the top glass plate 
or by the non-uniformity of the temperature of the top glass plate caused by the 
temperature increase of the cooling water. Lateral heat loss in our experiments has 
practically been eliminated by surrounding the rim of the fluid with vacuum as 
indicated in figure 1. But this arrangement makes the vertical temperature gradient 
in the rim smaller than the temperature gradient in the fluid because the cooling at 
the rim is applied at a greater height above the copper plate than for the glass plate 
over the fluid layer (figure 1). At  the level of the fluid the rim will be warmer than 
the fluid, i.e. there is a horizontal temperature gradient. However, the lucite rim is 
a very poor thermal conductor, while the copper on the bottom of the very thin 
silicone-oil layer is an excellent conductor. Even from the top of the fluid layer the 
uniform temperature of the copper plate is only about 1 mm away, while the rim is, 
for a large part of the fluid, some centimetres away. Furthermore, the thermal 
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conductivity of copper is about 2500 times better than the thermal conductivity of 
silicone oil. Thus i t  would require very large temperature differences between the rim 
and the fluid in order to create an effective horizontal temperature gradient in the 
interior of the fluid. Also, there is no mechanism known by which small-scale cells 
would be created via a horizontal temperature gradient in a fluid. Finally the 
experiment with the fluid contained by a small lucite ring does not support the 
concept of the significance of the lateral temperature gradient either, because in that 
set-up the fluid layer is separated from the rim of the apparatus by an air gap of 12 mm 
width. Air is an excellent thermal insulator which should shield the fluid effectively 
from the temperature distribution in the rim. 

To investigate the non-uniformity of the temperature of the glass lid caused by 
the increase of the temperature of the cooling water, we measure this temperature 
increase with the heat sensor. For the extreme case ofthe lowest fluid depth (0.73 mm) 
and the largest applied temperature difference across the oil, the temperature increase 
of the cooling water amounted to 3 %  of the temperature difference across the oil. 
However, the temperature difference in the cooling fluid extends from the centre of 
the lid to the rim of the lid. If  one compares the temperature gradients then the ratio 
of the temperature gradient across the lid to the vertical temperature gradient across 
the convecting fluid is about 2 x I n  order to see whether this has a noticeable 
effect on the formation of the pattern, we increased the flow rate of the cooling water 
from the 20 om3 s-l used when we measured with the heat sensor, to the maximal 
flow rate with this pump which was about 80 om3 s-l. The ratio of the radial to the 
vertical temperature gradient was then 5 x No noticeable consequence of the 
increased flow rate was observed. We do not, therefore, believe that the radial 
temperature gradient in the glass lid is significant for the formation of the first 
pattern. 

The misalignment of the plane of the glass lid with respect to  the plane of the fluid 
surface discussed in $3.1 has a potentially greater influence on the uniformity of 
the top temperature of the fluid, than the non-uniformity of the temperature caused 
by the cooling. The consequences of the misalignment of the lid on the onset of the 
hexagonal pattern were obvious in all experiments, see e.g. figure 2 ( d ) .  All efforts to 
improve on this situation had little or no success. Misalignment of the lid seemed to 
have little if any effect on the formation of the first pattern, which in all experiments, 
seemed to  form essentially in an axisymmetric and not one-sided way. Figure 2 (a,  d )  
are from the same experiment and show that there is no apparent relation between 
the symmetry of the formation of the first pattern and the asymmetry of the 
formation of the hexagonal pattern. 

Motion of the air between the fluid and the glass lid might also be the cause for the 
formation of the first pattern. However, the Rayleigh numbers of the air layer are, 
even with the highest temperatures applied, smaller than lop3 R,. The prime reason 
for this is the very small depth of the air layer ( x  0.5 mm) and the dependence of 
the Rayleigh number on the third power of the depth. It seems to be most unlikely 
that the first pattern is induced by motion of the air layer. 

Finally, another possible experimental imperfection might be that the aluminum 
powder added to  the fluid causes the formation of the first pattern. The aluminum 
powder settles gradually and causes a compensating upward motion of the fluid. 
However, one would expect any possible effect of the settling of the powder to be 
smaller in the shallow layers of fluid than in deep layers, because the aluminum 
powder will settle sooner in the shallow layers and so i t  seems to  be unlikely that 
the first pattern would appear preferentially in shallow fluid layers. One should also 
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expect an effect of the concentration of the aluminum particles. The concentration 
of the particles was varied substantially (we estimate by a factor of a t  least lo), mainly 
because of our efforts to take photographs of the flow which requires substantially 
bigger concentrations of the aluminum powder, but we did not notice any indication 
that this had influenced the appearance of the first pattern. We know of no theory 
that would predict the formation of a cellular pattern on the basis of the settling 
motion of an impurity in a fluid. Such a settling motion is not related to the diffusive 
two-component BBnard convection problem which has been reviewed by Schechter, 
Velarde & Platten (1974). 

To summarize, we do not see a convincing reason for believing that the first pattern 
is caused by an imperfection of the experimental set-up. 

Concerning the question of the possibility of a subcritical instability we note that 
a subcritical instability was predicted by Davis (1969). Later, Davis & Homsy (1980) 
and Castillo & Velarde (1982) elaborated on this topic. Of importance in connection 
with this problem is the value of the crispation number C, which is a characteristic 
parameter for the importance of the surface tension coefficient S. C is defined as 
C = pK/Sd, where p is the dynamic viscosity of the fluid. In  our experiments the value 
of C is about 5.5 x so the deformability of the surface is very small. This means 
that the basic results concerning the subcritical instability are contained in Davis’ 
(1969) paper. From figure 1 therein, it follows for L = 0 (we have L = 0.2) that the 
subcritical instability ranges from Ma = 57 to Ma = 80 at R = 0. However, in our 
experiments with the 0.72mm deep layer the first pattern appears according to 
table 2 at Ma = 7.2 (with R = 0.7), which is deep in the stable region of figure 1 of 
Davis. So, although according to the energy method a range of instability is predicted 
which is at a lower Marangoni number than the critical value of the instability 
predicted by linear theory, the instability apparent in the first pattern that we 
observe is deep in the stable region according to the energy method. There is also the 
problem that the subcritical instability is probably associated with the appearance 
of the hexagonal pattern, and not a pattern of a different form as we observed. 

An explanation of the first pattern can be sought in Scriven & Sternling’s (1964) 
paper. The onset of convection driven by surface tension at ever smaller temperature 
gradients is actually predicted there. There are, however, difficulties. Scriven & 
Sternling predict that the small onset temperature gradients are accompanied by 
increased wavelengths or cell sizes. However, we did not observe in any of our 
experiments a noticeable difference in the size of the cells of the first pattern and the 
hexagonal pattern. The wavelength of the hexagonal pattern is determined by Nield’s 
theory and does not change with decreased depth of the fluid. It can be seen in figure 
2 (d) that there is no significant difference in the cell sizes of the first pattern and the 
hexagonal pattern. We did not make a systematic survey of the cell sizes, but we 
believe that within 10 % accuracy the wavelength of the first pattern and the 
hexagonal pattern are the same. So there seems to be a discrepancy between the 
experimental observation and this aspect of Scriven & Sternling’s results. Also, it  
follows from Smith (1966) and Davis & Homsy (1980) that only very small shifts in 
the critical Marangoni number are expected if the crispation number is as small as 
it is in our experiments. 

Our experimental results for the onset of the hexagonal pattern, are in quite good 
agreement with the basic results of Pearson (1958) and Nield (1964). Nield’s study 
seems to be particularly relevant because it incorporates gravity, which is present 
in the laboratory and is of such magnitude that it cannot easily be neglected. The 
fact that the hexagonal pattern appears in thin layers at subcritical Marangoni 
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numbers seems to be understandable as a finite-amplitude effect of the first pattern. 
It appears that Pearson’s and Nield’s theories correctly predict the consequences of 
the presence of the surface tension gradient dS/dT on convective motions. So the 
formation of the first pattern, which appears neither in Pearson’s nor in Nield’s study, 
is not caused by the variation of surface tension with temperature. 
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